ค้นหาทุกอย่างในเว็บครูบ้านนอก :
ชุมชนครู บุคลากรทางการศึกษา และนักเรียน แหล่งความรู้สำหรับครู นักเรียน ข่าวการศึกษา ห้องสมุดความรู้ทุกกลุ่มสาระการเรียนรู้ และความรู้ทั่วไป เผยแพร่ผลงานวิชาการ ที่นี่


ข่าวการศึกษา     ความรู้ทั่วไป     งานราชการ/รัฐวิสาหกิจ/บริการสังคมคณิตศาสตร์  ▶ ข่าว/บทความ ▶ หน้าแรก

ปิแอร์ เดอ แฟร์มาต์ นัก คณิตศาสตร์


คณิตศาสตร์ เปิดอ่าน : 31,141 ครั้ง
ปิแอร์ เดอ แฟร์มาต์ นัก คณิตศาสตร์

Advertisement

ปิแอร์ เดอ แฟร์มาต์ (Pierre de Fermat)

            แฟร์มาต์เป็นชาวฝรั่งเศส เป็นนักคณิตศาสตร์ในยุคของการพัฒนาศิลปวิทยา เขาเกิดในวันที่ 17 เดือนสิงหาคม ค.ศ. 1601 แฟร์มาต์เป็นบุตรชายพ่อค้าขายเครื่องหนังผู้มั่งคั่งคนหนึ่งของฝรั่งเศส  แฟร์มาต์มีผลงานที่สำคัญในเรื่องทฤษฎีความน่าจะเป็น 

แฟร์มาต์


            ผลงานคิดค้นทางคณิตศาสตร์ของแฟร์มาต์ที่น่าสนใจและเป็นรากฐานในวิชาแคลคูลัสต่อมา คือ Method for determining Maxima and Minima and Tangents of Curved Lines ผลงานคิดค้นส่วนนี้ทำให้สามารถคำนวณหาจุดสูงสุดต่ำสุด และเส้นสัมผัสของรูปกราฟ ความสัมพันธ์แบบต่าง ๆ  และเข้าไปสู่เรื่องเรขาคณิตแบบใหม่  แฟร์มาต์ยังคงเขียนหนังสือเกี่ยวกับเรขาคณิตแบบใหม่นี้  โดยเน้นการวิเคราะห์พื้นผิว และรูปทรงต่าง ๆ  โดยให้ชื่อหนังสือว่า Introduction to Plane and Solid Loci

            งานที่มีชื่อเสียงและเป็นที่กล่าวถึงของนักคณิตศาสตร์และชนรุ่นหลังอย่างมาก คือ แฟร์มาต์ได้เสนอทฤษฎีที่เรียกว่า ทฤษฎีบทสุดท้ายของแฟร์มาต์

            แฟร์มาต์ยังได้ทำการศึกษาและให้ข้อมูลเพิ่มเติมเกี่ยวกับเลขจำนวนเฉพาะ  และต่อมาได้เรียกกันว่า ตัวเลขของแฟร์มาต์ (Fermat Number)

ทฤษฎีบทสุดท้ายของแฟร์มาต์

ทฤษฎีบทสุดท้ายเป็นข้อคิดของแฟร์มาต์ ที่นำเสนอว่า จากสมการ xn + yn = zไม่มีทางเป็นไปได้ เมื่อ n มีค่ามากกว่า 2 และ n, x, y, z เป็นเลขจำนวนเต็ม หรือกล่าวได้ว่า ถ้าให้ x, y, z  เป็นเลขจำนวนเต็มใด ๆ และ n เป็นเลขจำนวนเต็มที่มีค่ามากกว่า 2 แล้ว  xn + yn จะต้องไม่เท่ากับ zn

 

จากทฤษฎีนี้ทำให้มีการตื่นตัวหาวิธีการพิสูจน์ จนเวลาหลายร้อยปี ผู้คนยังพยายามหาทางพิสูจน์ทฤษฎีบทสุดท้ายนี้ ทำให้มีความตื่นตัวในการศึกษาคณิตศาสตร์กันอย่างกว้างขวาง

ตัวเลขของแฟร์มาต์ (Fermat Number)

                    ความคิดในเรื่องเลขจำนวนเฉพาะได้มีการศึกษากันมาตั้งแต่สมัยยูคลิด  ยูคลิดได้กล่าวว่าตัวเลขใด ๆ สามารถเขียนอยู่ในรูปผลคูณของตัวเลขจำนวนเฉพาะ หรือกล่าวได้ว่าตัวเลขใด ๆ จะต้องมีตัวประกอบเป็นเลขจำนวนเฉพาะได้เสมอ

                                                                                                                   N = p1p2p3...pn
                                                                                     เมื่อ p หมายถีงตัวเลขจำนวนเฉพาะ หรือ  1

                    ยูคลิดยังได้พิสูจน์ให้เห็นว่า ในระบบเลขจำนวนเฉพาะ จะมีจำนวนตัวเลขจำนวนเฉพาะได้อนันต์

                    แฟร์มาต์ได้ทำการศึกษาเลขจำนวนเฉพาะ และได้พิสูจน์ให้เห็นว่า ตัวเลขจำนวนเฉพาะใด ๆ ที่มีรูปแบบเป็น
4n + 1 ตัวเลขจำนวนเฉพาะนี้จะเขียนให้อยู่ในรูปแบบของตัวเลขยกกำลังสองของตัวเลขสองตัวรวมกัน  เช่น

                                                                                                              5   เป็นเลขจำนวนเฉพาะ
                                                                                                              5 = 4n + 1   =  4 x 1 + 1        (n = 1)
                                                                              ซึ่งเขียนได้  เป็น
                                                                                                              5 = 22 + 12
                                                                              หรือตัวอย่าง
                                                                                                            13 = 4 x 3 + 1
                                                                              เขียน
                                                                                                            13 = 32 + 22

                    แฟร์มาต์ยังพิสูจน์ให้เห็นว่า 2n + 1 เป็นเลขจำนวนเฉพาะ ถ้าหาว่า n มีค่าเป็นตัวเลขของสองยกกำลัง  เช่น

                                                                                                            21 + 1 = 3
                                                                                                            22 + 1 = 5
                                                                                                            24 + 1 = 17
                                                                                                            28 + 1 = 257
                                                                                                                           .
                                                                                                                           .
                                                                                                                           .
                                                                                                       n = 1, 2, 4, 8, 16,....

                    ตัวเลขจำนวนเฉพาะในกรณีนี้เรียกว่า ตัวเลขแฟร์มาต์  หลังจากนั้นต่อมาอีกประมาณ 100 ปี    ออยเลอร์ (Euler)   ได้พิสูจน์ให้เห็นว่าที่แฟร์มาต์ กล่าวมานี้ไม่เป็นจริงเพราะ  232 + 1  เท่ากับ 4,294,967,297  เป็นตัวเลขที่ไม่ใช่เลขจำนวนเฉพาะ เพราะหารด้วย 641 ได้ลงตัว

                     Marin Mersenne ได้ทำการศึกษาเลขจำนวนเฉพาะในรูปแบบ 2n - 1 ซึ่งพบว่า 2n - 1 ไม่เป็นจำนวนเฉพาะทุกตัว  ตัวเลขจำนวนเฉพาะที่อยู่ในรูป  2n - 1 เรียกว่า  Mersenne number จนถึงปัจจุบันนี้มีผู้พบตัวเลข Merssenne  37 ตัว  ตัวเลขที่ใหญ่ที่สุด คือ 23,021,337 - 1 เป็นเลขจำนวนเฉพาะที่มีขนาด 909526 ตัวเลข

                    จากการศึกษาเลขจำนวนเฉพาะมาตั้งแต่อดีตจนถึงปัจจุบัน  ยังมีคำถามที่ยังหาคำตอบไม่ได้เกี่ยวกับเลขจำนวนเฉพาะอยู่มากมาย เช่น
                                            -    มีเลขจำนวนเฉพาะที่อยู่ในรูปแบบ n2 + 1  อยู่อนันต์ตัว
                                            -    ระหว่างตัวเลข n2 และ (n + 1)2 อย่างต้องมีเลขจำนวนเฉพาะอยู่ด้วย
                                            -    ตัวเลขแฟร์มาต์ที่เป็นเลขจำนวนเฉพาะมีได้อนันต์ตัว

                    ความคิดเกี่ยวกับเรื่องเลขจำนวนเฉพาะ จึงเป็นโจทย์ที่ยังต้องการหาผู้คิดค้นได้อีก

 

ที่มา : รศ. ยืน ภู่วรวรรณ, สำนักบริการคอมพิวเตอร์ มหาวิทยาลัยเกษตรศาสตร์
http://blog.eduzones.com/dena/4114


ปิแอร์ เดอ แฟร์มาต์ นัก คณิตศาสตร์ปิแอร์เดอแฟร์มาต์นักคณิตศาสตร์

Advertisement

≡ เรื่องอื่นๆ ที่น่าอ่าน ≡

การคิดเลขในใจ

การคิดเลขในใจ


เปิดอ่าน 38,650 ครั้ง
สรุปสูตร วงกลม

สรุปสูตร วงกลม


เปิดอ่าน 85,930 ครั้ง
ประวัติเครื่องหมายหาร  (÷)

ประวัติเครื่องหมายหาร (÷)


เปิดอ่าน 232,373 ครั้ง
มหัศจรรย์ เลข 11

มหัศจรรย์ เลข 11


เปิดอ่าน 69,791 ครั้ง
จำนวนนับ

จำนวนนับ


เปิดอ่าน 4,019 ครั้ง
การวัดมุมในระนาบดิ่ง

การวัดมุมในระนาบดิ่ง


เปิดอ่าน 16,928 ครั้ง

:: เรื่องปักหมุด ::

ออกัสตา แอดา ไบรอน (Augusta Ada Byron) นักคณิตศาสตร์หญิงของโลก

ออกัสตา แอดา ไบรอน (Augusta Ada Byron) นักคณิตศาสตร์หญิงของโลก

เปิดอ่าน 6,607 ☕ คลิกอ่านเลย

Advertisement

≡ เรื่องน่าสนใจในหมวดหมู่นี้ ≡
วีดิทัศน์คณิตศาสตร์ ชั้น ป.4 โดย สสวท.
วีดิทัศน์คณิตศาสตร์ ชั้น ป.4 โดย สสวท.
เปิดอ่าน 20,647 ☕ คลิกอ่านเลย

สมการและการแก้สมการ
สมการและการแก้สมการ
เปิดอ่าน 10,361 ☕ คลิกอ่านเลย

การเขียนกราฟ
การเขียนกราฟ
เปิดอ่าน 23,289 ☕ คลิกอ่านเลย

ดาวน์โหลดที่นี่ แบบฝึกหัดเพื่อพัฒนาทักษะการคิดเลขเร็ว  ชั้นประถมศึกษาปีที่ 1 - 6 เริ่มใช้ภาคเรียนที่ 1/2559
ดาวน์โหลดที่นี่ แบบฝึกหัดเพื่อพัฒนาทักษะการคิดเลขเร็ว ชั้นประถมศึกษาปีที่ 1 - 6 เริ่มใช้ภาคเรียนที่ 1/2559
เปิดอ่าน 136,338 ☕ คลิกอ่านเลย

ประวัติย่อของคณิตศาสตร์ : ฟริดริก เกาส์
ประวัติย่อของคณิตศาสตร์ : ฟริดริก เกาส์
เปิดอ่าน 26,062 ☕ คลิกอ่านเลย

คณิตศาสตร์เกิดขึ้นได้อย่างไร
คณิตศาสตร์เกิดขึ้นได้อย่างไร
เปิดอ่าน 22,464 ☕ คลิกอ่านเลย

≡ เรื่องน่าอ่าน/สาระน่ารู้ ≡

10 ความเข้าใจผิดๆ กับเรื่องอาหาร
10 ความเข้าใจผิดๆ กับเรื่องอาหาร
เปิดอ่าน 9,725 ครั้ง

ประวัติของทุเรียนในประเทศไทย
ประวัติของทุเรียนในประเทศไทย
เปิดอ่าน 22,060 ครั้ง

จากหัวใจดวงน้อยๆ ที่อยากบอกรักพ่อหลวง ผ่านบทเพลง "เล่าสู่หลานฟัง"
จากหัวใจดวงน้อยๆ ที่อยากบอกรักพ่อหลวง ผ่านบทเพลง "เล่าสู่หลานฟัง"
เปิดอ่าน 11,942 ครั้ง

ตัวอย่างแนววินิจฉัยของ ก.พ.ค. 24 กรณี
ตัวอย่างแนววินิจฉัยของ ก.พ.ค. 24 กรณี
เปิดอ่าน 13,972 ครั้ง

ประโยชน์ของการเลี้ยงสัตว์
ประโยชน์ของการเลี้ยงสัตว์
เปิดอ่าน 20,517 ครั้ง

เกมส์ รวมเกมส์สนุกๆ มากมาย
สนามเด็กเล่น

แหล่งรวมเกมส์ เกมส์ให้เล่นมากมาย ศูนย์รวมเกมส์สนุกๆ เกมส์ความรู้ เกมส์ลับสมอง เกมส์ประลองยุทธ แหล่งรวบรวมข้อมูล เกมส์ เกมส์ออนไลน์ เกมส์มันๆ เกมส์ตัดผม ไว้มากมายที่นี่ ให้เด็กๆได้เลือกเล่นมากมาย คลิกเลย


เว็บไซต์ที่น่าสนใจ

  • IELTS Test
  • SAT Test
  • สอบ IELTS
  • สอบ TOEIC
  • สอบ SAT
  • เว็บไซต์พันธมิตร

  • IELTS
  • TOEIC Online
  • chulatutor
  • เพลงเด็กอนุบาล
  •  
    หมวดหมู่เนื้อหา
    เนื้อหา แยกตามหมวดหมู่ สามารถเลืออ่านได้ตามหมวดหมู่ที่นี่


    · Technology
    · บทความเทคโนโลยีการศึกษา
    · e-Learning
    · Graphics & Multimedia
    · OpenSource & Freeware
    · ซอฟต์แวร์แนะนำ
    · การถ่ายภาพ
    · Hot Issue
    · Research Library
    · Questions in ETC
    · แวดวงนักเทคโนฯ

    · ความรู้ทั่วไป
    · คณิตศาสตร์
    · วิทยาศาสตร์และเทคโนโลยี
    · ภาษาต่างประเทศ
    · ภาษาไทย
    · สุขศึกษาและพลศึกษา
    · สังคมศึกษา ศาสนาฯ
    · ศิลปศึกษาและดนตรี
    · การงานอาชีพ

    · ข่าวการศึกษา
    · ข่าวตามกระแสสังคม
    · งาน/บริการสังคม
    · คลิปวิดีโอยอดนิยม
    · เกมส์
    · เกมส์ฝึกสมอง

    · ทฤษฎีทางการศึกษา
    · บทความการศึกษา
    · การวิจัยทางการศึกษา
    · คุณครูควรรู้ไว้
    · เตรียมประเมินวิทยฐานะ
    · ผลงานวิชาการเล่มเต็ม
    · เครื่องมือสำหรับครู

    ครูบ้านนอกดอทคอม

    เว็บไซต์เพื่อครู ข่าวการศึกษา ความรู้ การศึกษาไทย

          kroobannok.com

    © 2000-2020 Kroobannok.com  
    All rights reserved.


    Design by : kroobannok.com


    ครูบ้านนอกดอทคอม
    การจัดอันดับของ Truehits Web Directory

    วิธีนำแบนเนอร์ของครูบ้านนอก.คอมไปแปะในเว็บท่าน บันทึกภาพแบนเนอร์นี้และลิงค์มาที่เราครับ (มีแบนเนอร์ 2 แบบ)
     

    ครูบ้านนอกดอทคอม เว็บไซต์ของครูตัวเล็กๆ คนหนึ่ง ที่หวังเพียง ใช้เป็นช่องทางในการสื่อสาร แลกเปลี่ยน เพิ่มพูนความรู้ และให้ข่าวสาร ที่ทันสมัยต่อเหตุการณ์แก่คุณครู ผู้ปฏิบัติงานในทุกพื้นที่ของประเทศไทย เพื่อความเจริญงอกงามในปัญญา และเจริญก้าวหน้าในวิชาชีพ

    เว็บนี้ถือกำเนิดเมื่อ 5 มกราคม 2548

    Email : kornkham@hotmail.com
    Tel : 096-7158383

    สนใจสนับสนุนเรา โดยลงโฆษณา
    คลิกดูรายละเอียดที่นี่ครับ