ค้นหาทุกอย่างในเว็บครูบ้านนอก :
ชุมชนครู บุคลากรทางการศึกษา และนักเรียน แหล่งความรู้สำหรับครู นักเรียน ข่าวการศึกษา ห้องสมุดความรู้ทุกกลุ่มสาระการเรียนรู้ และความรู้ทั่วไป เผยแพร่ผลงานวิชาการ ที่นี่


หน้าแรกครูบ้านนอก > ข่าว/บทความ > คณิตศาสตร์ > ประวัติศาสตร์ของ ¶

ประวัติศาสตร์ของ ¶

🗓 โพสต์เมื่อวันที่ : 25 พ.ค. 2551 เปิดอ่าน : 15,322 ครั้ง

Advertisement

☰แชร์ >  
Share on Google+ LINE it!
เพิ่มเพื่อน
ประวัติศาสตร์ของ ¶

Advertisement

ผู้เขียน: นิตยสาร My Math

หน้าที่ 1 - อาร์คีมีดีสถึงเอราทอสธีเนียส

ซึ่งไม่ได้วางอยู่บนหลักการอะไรเลยนอกเสียจากหลักพื้นๆหยาบๆไม่สูงส่งอันใด และ เครื่องประดิษฐ์เกรดต่ำในเชิงพาณิชย์ นั่นคือสิ่งที่เขาถูกกล่าวหาว่าประดิษฐ์ขึ้นด้วยความไม่ค่อยเต็มใจ ใน The Method อาร์คีมีดีสได้ เขียนจดหมายถึง เอราทอสธีเนียส บรรณารักษ์แห่งอเล็กซานเดรีย ซึ่งเขาเคยได้พบกันว่า :

จากอาร์คีมีดีสถึงเอราทอสธีเนียส

ข้าพเจ้าได้ส่งบางทฤษฎีบทที่ข้าพเจ้าได้ค้นพบก่อนหน้าให้แก่ท่านก็เพียงเขียนแถลงเพื่อเชื้อเชิญท่านค้นหาทางพิสูจน์ ซึ่งในตอนนั้นข้าพเจ้ามิได้ให้ [...] การพิสูจน์ทฤษฎีบทเหล่านั้น ข้าพเจ้าได้เขียนบันทึกลงในสมุดเล่มนี้ซึ่งตอนนี้ได้ส่งมาให้ท่าน ดังที่ข้าพเจ้าเคยกล่าว มากกว่าเพียงการมอง ด้วยท่านเป็นนักเรียนที่ตั้งใจจริงจัง […] ข้าพเจ้าคิดว่าเหมาะแล้วที่เขียนขึ้นมาให้สำหรับท่าน และอธิบายรายละเอียดในสมุดเล่มเดียวกันซึ่งเป็นวิธีการที่เฉพาะอย่างยิ่ง ซึ่งมีความเป็นไปได้สำหรับท่านจะไดสืบสวนบางประเด็นปัญหาในทางคณิตศาสตร์โดยวิธีการทางกลศาสตร์ ข้าพเจ้าออกจะเชื่อว่าด้วยขั้นตอนวิธีการเช่นนี้มิได้ไร้มรรคผลใด แม้กระทั่งการพิสูจน์ทฤษฎีบทเหล่านั้นในตัวพวกมันเอง แน่นอนว่าสิ่งประการแรกสุดที่ต้องปรากฏชัดสำหรับข้าพเจ้าโดยวิธีการทางกลศาสตร์ แม้ว่ามันจะต้องแสดงให้เห็นด้วยเรขาคณิตในภายหลัง ก็เพราะว่าการสืบสวนเหล่านั้นจากวิธีการที่กล่าวถึงมิได้จัดแต่งขึ้นเพื่อแสดงให้เห็นได้อย่างแท้จริง แต่ก็เป็นที่แน่นอนว่ามันเป็นการง่ายกว่า เมื่อเราได้ใช้มันด้วยวิธีการดังกล่าวซึ่งอาจใช้บางความรู้ของคำถาม เพื่อนำมาพิสูจน์ ซึ่งง่ายกว่าจะค้นพบโดยที่ปราศจากความรู้ใดๆก่อนหน้า



ตัวอย่างที่มีชีวิตชีวาของวิธีการเช่นนี้ ก็คือการประยุกต์ใช้หลักการของคานโดยอาร์คีมีดีสจนได้มาซึ่งปริมาตรของรูปทรงกลมบางส่วน หรือแม้กระทั่งรูปทรงกลมทั้งหมด ดังที่ได้แสดงในภาพ การค้นพบของอาร์คีมีดีสครั้งนี้ล้ำค่ายิ่ง จนกระทั่งเขาขอร้องให้นำรูปทรงกลมที่แทรกอยู่ในรูปทรงกระบอกไปจารึกที่แท่นหินเหนือหลุมศพของเขา และ สิ่งนี้ก็ได้ถูกทำขึ้น ด้วยคิดว่าแท่นหินนี้สูญหายไป เราได้รายละเอียดที่จารึกบนแผ่นหินนี้จาก ซิเซโร (Cicero) ซึ่งได้ไปเยือนในคริสต์ศตวรรษที่ 1 ในระหว่างที่เขาไปปฏิบัติงานในฐานะผู้สืบค้นที่ซิชีลี (Sicily)

70224


หลักการของคานที่นำมาประยุกต์ใช้กับเรขาคณิต ระบบ PS ตั้งฉากกับ GF ที่จุดใดของ P จะตัดกับ รูปทรงกลม รูปทรงกรวย และ รูปทรงกระบอกโดยมีรัศมี PR,PQ และ PS ตามลำดับ อาร์คีมีดีสพิสูจน์ให้เห็นว่าวงกลมสองวงแรก (ซึ่งน้ำหนักของทั้งสองวงกลมได้สัดส่วนกับพื้นที่ของทั้งสองวงกลม) ที่วางอยู่บนคาน GEF ที่จุดหมุน E จะได้สมดุลกันกับวงกลมที่สามที่จุด P จากสิ่งนี้เขาจึงสามารถหาปริมาตรของส่วนของทรงกม หรือกระทั่งปริมาตรของทรงกลมทั้ง (4¶r3/3)


และความทรงจำที่น่าสนใจยิ่งสำหรับการที่ได้ค้นพบ The Method ซึ่งถูกค้นพบในปี 1906 ในคอนสแตนติโนเปิ้ล บนแท่นจารที่เรียกว่า palimpsest ซึ่งก็คือการลบล้างตัวอักษรข้อเขียนดั้งเดิมออกจากแผ่นหนังสัตว์ (หนังแกะหรือหนังแพะ) และแทนที่ด้วยตัวอักษรใหม่ ถ้าตัวอักษรดั้งเดิมที่ถูกลบล้างออกกระทำอย่างไม่สมบูรณ์ ก็จะสามารถกู้คืนมาได้ด้วยวิธีการถ่ายภาพแบบพิเศษ ซึ่งในกรณีนี้ ตัวอักษรดั้งเดิมนั้นเป็นการคัดลอกในศตวรรษที่10 ในงานบางอย่างที่รู้จักกันว่าเป็นของอาร์คีมีดีส ซึ่งรวมทั้งตำรางานที่ยังคงมีอยู่เพียงเล่มเดียวนั่น คือ The Method


ความริษยาของยุคกลางมิได้เป็นอย่างที่บิชอบแห่งยูคาทันหรือนักรบแห่งครูเสดที่คอนสแตนติโนเปิ้ลกระทำเสมอไป นั่นคือ การเผาตำราทางวิทยาศาสตร์ในฐานะงานของปิศาจ บางครั้งพวกเขาก็เพียงลบล้างตัวอักษรบนแผ่นหนังเหล่านั้นก็เพียงเพื่องานกระดาษหนัง บางทีพวกเขาคงจะลบล้างมันด้วยความหลงเชื่อเลอะเลือน

 


 

 ประวัติศาสตร์ของ ¶ (ตอนที่ 2)

แต่กระนั้นก็ตาม ท่านราบีก็ค่อนข้างจะแกว่งไปมาสำหรับความกว้างของผนังขันสาครทองสัมฤทธ์นั้นถูกกำหนดให้เป็นสามในคัมภีร์มีดังว่า (I kings vii, 26):


และมันมีความหนากว้างหนึ่งฝ่ามือ (hand หนึ่งฝ่ามือประมาณ 4 นิ้ว ส่วนหนึ่งคิวบิทประมาณ 21.8 นิ้ว)* และดังนั้นขอบจึงทำขึ้นคล้ายขอบถ้วย มีช่อดอกลิลลี่ ขันนี้บรรจุได้สองพันบาธ 


นี่เป็นยุคสายัณห์ เมื่อมันยังมีความเป็นไปได้ที่จะพยายามประนีประนอมระหว่างวิทยาศาสตร์กับศาสนา ไม่มีความประนีประนอมใดที่จะได้รับการยอมรับอย่างใจกว้างในช่วงรัตติกาลใครก็ตามที่ที่สร้างความขุ่นเคืองในสิ่งกล่าวในไบเบิล ย่อมเสี่ยงต่อการถูกทรมานและถูกเผาทั้งเป็น

ก่อนที่เราจะเคลื่อนไปสู่ราตรีกาล เรามาหยุดแวะเพื่อดื่มด่ำกับอดีตกาลอันเป็นความทรงจำที่เกาะแน่นของพวกเขาอันเกี่ยวข้องกับปัญหาทางคณิตศาสตร์โดยที่ปราศจากการใช้ประโยชน์จากระบบสัญลักษณ์ทางพีชคณิต (ซึ่งก็ได้ถูกแนะนำมาใช้อย่างมากมายในภายหลังโดยชาวอาหรับ) ตัวอย่างเช่น นีฮีไมอาห์ กล่าวว่าพื้นที่ของวงกลมเป็นดังนี้:



ถ้าใครต้องการวัดพื้นที่วงกลม ให้เขาคูณสายโยงใย (เส้นผ่านศูนย์กลาง) เข้ากับตัวมันเองแล้วหักออกหนึ่งในเจ็ดและหักออกอีกครึ่งหนึ่งของหนึ่งในเจ็ด; ที่เหลือนั่นก็คือพื้นที่ หรือหลังคาของมัน

นั่นคือว่า พื้นที่คือ A = d^2- d^2 /7 - d^2 /14

ซึ่งเท่ากับ \left( {3 1/7} \right) \times \left( {d/2} \right)^2

ดังนั้นถ้าค่าของอาร์คีมีดีสที่ให้ ¶ = 3 1/7 นั้นเป็นที่ยอมรับ สูตรนี้ก็ถูกต้อง

นอกจากนี้ในยุคกลางของลาติน ยังไม่มีสัญลักษณ์เดี่ยว อย่างเช่น  ¶  ใช้สำหรับอัตราส่วนวงกลม ดังนั้นค่า  ¶ จำต้องถูกอธิบายในรูปแบบข้อความคำพูดเช่น : quantitas, in quam cum mutiplicetur diameter, proveniet circumferentia (ปริมาณที่เมื่อเส้นผ่านศูนย์กลางถูกคูณด้วยปริมาณที่ว่าแล้วผลได้คือเส้นรอบวง) และข้อความคำพูดเช่นนี้เมื่อแทรกเข้าอยู่ในประโยคคำพูดยาวๆ ที่มีค่าเท่ากับสูตร เช่น พื้นที่ของวงกลมก็จะเป็นดังต่อไปนี้:


Multipication medietatis diametric in se ejus, quod proveniet, inquantitatem, in quam cum multiplicatus diameter provenit circumferential, aequalis superficies circuli.

(ผลการคูณของครึ่งหนึ่งของเส้นผ่านศูนย์กลางเข้ากับตัวของมันเอง และผลลัพธ์ที่ว่าถูกคูณด้วยปริมาณที่เมื่อเส้นผ่านศูนย์กลางถูกคูณด้วยปริมาณที่ว่าแล้วผลได้คือเส้นรอบวง แล้วจะได้เท่ากับพื้นที่ของวงกลม)


ประโยคอันน่ากลัวเช่นนี้บ่งชี้ (อย่างถูกต้อง) ว่า   [(d/2) x (d/2)] x ¶ = A

บางทีชาวกรีกได้สร้างความก้าวหน้าอันยิ่งใหญ่ในทางคณิตศาสตร์นั่นเพราะว่าเรขาคณิตของพวกเขานั้นชัดเจนในเรื่องการคำนวณในเชิงตัวเลข และดังนั้นจึงไม่ได้ถูกสะดุดล้มลงในวิธีแสดงถึงความสัมพันธ์ในเชิงพีชคณิตอันเป็นภาษาที่เข้าใจได้ดังข้อความของยูคลิดที่ว่า

ในวงกลม มุมที่มีส่วนโค้งของวงกลมรองรับเท่ากัน แล้วคอร์ดจะยาวเท่ากัน หรือ ถ้ารูปสามเหลี่ยมสองรูปมีมุมที่มีขนาดเท่ากัน แล้วด้านที่อยู่ตรงข้ามกับมุมของทั้งคู่ได้สัดส่วนกัน  นั้นก็ยังไม่ได้ถูกปรับปรุงเลยใน 2,200 ปีที่ผ่านมา

 


 

ที่มา  วิชาการ.คอม (www.vcharkarn.com)

Advertisement


TAGS ที่เกี่ยวข้อง >> ประวัติศาสตร์ของ ¶ , , ประวัติศาสตร์ของ , << คลิกอ่านเพิ่มเติม

≡ เรื่องอื่นๆ ที่น่าอ่าน ≡

คลิกอ่าน!
คลิกอ่าน!
คลิกอ่าน!
สรุปสูตรวงรี

สรุปสูตรวงรี
เปิดอ่าน 72,333 ครั้ง
คลิกอ่าน!
สรุปสูตรพาราโบลา

สรุปสูตรพาราโบลา
เปิดอ่าน 176,623 ครั้ง
คลิกอ่าน!
คลิกอ่าน!
Advertisement

≡ เรื่องน่าสนใจในหมวดหมู่นี้ ≡
เรียนคณิต ใครว่ายาก☕ คลิกอ่านเลย
เรียนคณิต ใครว่ายาก
เปิดอ่าน 10,852 ครั้ง
การคูณด้วยไม้ตะเกียบแบบบูรณาการ (ชมคลิป)☕ คลิกอ่านเลย
การคูณด้วยไม้ตะเกียบแบบบูรณาการ (ชมคลิป)
เปิดอ่าน 18,390 ครั้ง
จำนวนตรรกยะ☕ คลิกอ่านเลย
จำนวนตรรกยะ
เปิดอ่าน 24,686 ครั้ง
การวัดระยะทางบนพื้นราบ☕ คลิกอ่านเลย
การวัดระยะทางบนพื้นราบ
เปิดอ่าน 20,177 ครั้ง
ประวัติเครื่องหมายหาร  (÷) ☕ คลิกอ่านเลย
ประวัติเครื่องหมายหาร (÷)
เปิดอ่าน 138,406 ครั้ง
Advertisment

≡ เรื่องน่าอ่าน/สาระน่ารู้ ≡

เล่นฮูลาฮูป ลดน้ำหนักได้จริงหรือ?เล่นฮูลาฮูป ลดน้ำหนักได้จริงหรือ?
เปิดอ่าน 100,941 ครั้ง
ข่าวดีของคนอ้วน รูปร่างอวบตอนหลังกลับยืดอายุให้ยืนข่าวดีของคนอ้วน รูปร่างอวบตอนหลังกลับยืดอายุให้ยืน
เปิดอ่าน 9,905 ครั้ง
คลิปน่ารัก เด็กชายวัย4ขวบร้องเพลงแบบอินสุดๆคลิปน่ารัก เด็กชายวัย4ขวบร้องเพลงแบบอินสุดๆ
เปิดอ่าน 7,603 ครั้ง
"ฟักทอง"ป้องเบาหวาน-บำรุงหัวใจ"ฟักทอง"ป้องเบาหวาน-บำรุงหัวใจ
เปิดอ่าน 22,906 ครั้ง
แฉกลโกง40ขายตรงตุ๋นผู้บริโภคหมื่นล.แฉกลโกง40ขายตรงตุ๋นผู้บริโภคหมื่นล.
เปิดอ่าน 15,357 ครั้ง

เกมส์ รวมเกมส์สนุกๆ มากมาย
สนามเด็กเล่น

แหล่งรวมเกมส์ เกมส์ให้เล่นมากมาย ศูนย์รวมเกมส์สนุกๆ เกมส์ความรู้ เกมส์ลับสมอง เกมส์ประลองยุทธ แหล่งรวบรวมข้อมูล เกมส์ เกมส์ออนไลน์ เกมส์มันๆ เกมส์ตัดผม ไว้มากมายที่นี่ ให้เด็กๆได้เลือกเล่นมากมาย คลิกเลย

 
 
สนามเด็กเล่น
เกมส์ รวมเกมส์ เกมส์แข่งรถ เกมส์ต่อสู้ เกมส์ภาษา เกมส์วางระเบิด เกมส์แต่งตัว เกมส์ท่องเที่ยว เกมส์หมากฮอส เกมส์ผจญภัย เกมส์เต้น เกมส์รถ เกมส์ดนตรี เกมส์ขายของ เกมส์ฝึกสมอง เกมส์เด็กๆ เกมส์ปลูกผัก เกมส์การ์ด เกมส์จับผิดภาพ เกมส์ตลก เกมส์ตัดผม เกมส์ก้านกล้วย เกมส์ทําอาหาร เกมส์เลี้ยงสัตว์ เกมส์ผี เกมส์จับคู่ เกมส์กีฬา เกมส์เศรษฐี เกมส์ฝึกทักษะ เกมส์วางแผน เกมส์จีบหนุ่ม เกมส์มาริโอ เกมส์ระบายสี เกมส์จีบสาว เกมส์เบ็นเท็น เกมส์ยิง เกมส์ยาน เกมส์สร้างเมือง เกมส์มันส์ๆ เกมส์แต่งบ้าน เกมส์ความรู้
หมวดหมู่เนื้อหา
[ข่าว/ประกาศ] [บทความเทคโนโลยีการศึกษา] [Technology] [e-Learning] [Graphics & Multimedia] [OpenSource & Freeware] [ซอฟต์แวร์แนะนำ] [ทฤษฎีทางการศึกษา] [เครื่องมือและเทคนิคการถ่ายภาพ] [Hot Issue] [Research Library] [Questions in ETC] [แวดวงนักเทคโนฯ] [ข่าวการศึกษา] [คุณครูควรรู้ไว้] [คณิตศาสตร์] [วิทยาศาสตร์] [ภาษาต่างประเทศ] [ภาษาไทย] [สุขศึกษาและพลศึกษา] [สังคมศึกษา ศาสนาและวัฒนธรรม] [ศิลปศึกษาและดนตรี] [การงานอาชีพและเทคโนโลยี] [My Profile] [เรื่องราวจากสมาชิก] [เตรียมประเมินวิทยฐานะ] [ความรู้ทั่วไป] [ผลงานวิชาการเล่มเต็ม] [ข่าวจากกระทรวงศึกษาธิการ] [สาระดีๆจากนานมีบุ๊คส์] [ภาพอบรม/สัมมนา] [การวิจัยทางการศึกษา] [โปรแกรม/เครื่องมือสำหรับครู] [ผู้สนับสนุน] [เกมส์] [งานราชการ/รัฐวิสาหกิจ/บริการสังคม] [คลิปวิดีโอ] [บทความการศึกษา] [infoGraphics] [เกาะกระแสโลกสังคมออนไลน์]
ข่าวล่าสุด

ครูบ้านนอกดอทคอม

เว็บไซต์เพื่อครู ข่าวการศึกษา ความรู้ การศึกษาไทย

      kroobannok.com

© 2000-2020 Kroobannok.com  
All rights reserved.


Design by : kroobannok.com


ครูบ้านนอกดอทคอม
การจัดอันดับของ Truehits Web Directory

วิธีนำแบนเนอร์ของครูบ้านนอก.คอมไปแปะในเว็บท่าน บันทึกภาพแบนเนอร์นี้และลิงค์มาที่เราครับ (มีแบนเนอร์ 2 แบบ)
 

ครูบ้านนอกดอทคอม เว็บไซต์ของครูตัวเล็กๆ คนหนึ่ง ที่หวังเพียง ใช้เป็นช่องทางในการสื่อสาร แลกเปลี่ยน เพิ่มพูนความรู้ และให้ข่าวสาร ที่ทันสมัยต่อเหตุการณ์แก่คุณครู ผู้ปฏิบัติงานในทุกพื้นที่ของประเทศไทย เพื่อความเจริญงอกงามในปัญญา และเจริญก้าวหน้าในวิชาชีพ

เว็บนี้ถือกำเนิดเมื่อ 5 มกราคม 2548

Email : kornkham@hotmail.com
Tel : 081-3431047

สนใจสนับสนุนเรา โดยลงโฆษณา
คลิกดูรายละเอียดที่นี่ครับ