ค้นหาทุกอย่างในเว็บครูบ้านนอก :
ชุมชนครู บุคลากรทางการศึกษา และนักเรียน แหล่งความรู้สำหรับครู นักเรียน ข่าวการศึกษา ห้องสมุดความรู้ทุกกลุ่มสาระการเรียนรู้ และความรู้ทั่วไป เผยแพร่ผลงานวิชาการ ที่นี่


หน้าแรกครูบ้านนอก > ข่าว/บทความ > คณิตศาสตร์ > ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ

ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ

🗓 โพสต์เมื่อวันที่ : 28 ก.ค. 2551 เปิดอ่าน : 23,851 ครั้ง

Advertisement

☰แชร์ >  
Share on Google+ LINE it!
เพิ่มเพื่อน
ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ

Advertisement

 

ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ

 

                ฟังก์ชัน จะมีค่ารากของสมการก็ต่อเมื่อสามารถหาค่า x ที่ทำให้ฟังก์ชัน นี้มีค่าเท่ากับศูนย์ 

เราจะกล่าวว่า มีค่าราก และเรียกค่า x นี้ว่า ค่ารากของสมการ =0

 

ตัวอย่าง จงตรวจสอบว่าฟังก์ชัน มีค่ารากของสมการหรือไม่

วิธีทำ    เนื่องจากค่ารากของสมการคือค่าที่ทำให้สมการมีค่าเป็นศูนย์

             ทำให้ได้ว่า

                                        

                                                       

            นั่นคือ ค่า x = 3 และค่า x = 5 เป็นค่าที่ทำให้ฟังก์ชัน มีค่าเป็นศูนย์      

              ดังนั้นฟังก์ชัน มีค่าราก

 

เนื่องจากในการศึกษาวิชาคณิตศาสตร์นั้น มีสมการหรือฟังก์ชันที่ไม่ได้อยู่ในรูปแบบที่ง่าย แก่การแก้สมการหาค่าราก  ดังนั้นจึงมีหลักในการวิเคราะห์ค่ารากของสมการเพื่อช่วยให้การแก้ปัญหา มีความสะดวกมากยิ่งขึ้น

 

การวิเคราะห์ค่ารากของสมการ

    1. สมการนั้นมีค่ารากที่แท้จริง(Real Roots) หรือไม่

    2. สมการนั้นมีค่ารากของสมการเพียงค่าเดียว (Single Roots) หรือมีหลายค่า (Multiple Roots)

    3. ถ้าสมการมีค่าราก จะหาค่ารากได้อย่างไร

      ทั้ง 3 ข้อนี้เป็นหลักในการวิเคราะห์และคำนวณหาค่ารากของสมการ คำตอบของทั้ง 3 คำถามนี้

สามารถศึกษาได้จากสื่อการสอนบนเครือข่ายอินเทอร์เน็ตชุดนี้

 

ทฤษฎีบท มีค่าราก m-1 ค่าที่ P ก็ต่อเมื่อ และ

 

ตัวอย่าง จงตรวจสอบว่า ฟังก์ชัน มีค่ารากหรือไม่ ถ้ามีค่าราก จะมีกี่ค่า

              วิธีทำ เนื่องจาก แสดงว่าฟังก์ชัน มีค่าราก

                        พิจารณา

                                     

                        จากทฤษฎีบทข้างต้น จะได้ว่าฟังก์ชัน มีค่ารากและมีเพียงค่าเดียวเท่านั้นคือ x = 0

 

ตัวอย่าง จงหาช่วง [a,b] ที่ ของ และ f(P) = 0 และ

            วิธีทำ จากทฤษฎีบท จะได้ว่า

                          

                     จาก

                                       

                                               

                    แทน , เป็นค่าต่ำสุดสัมพัทธ์

                    แทน , เป็นค่าสูงสุดสัมพัทธ์

                    แทน ,

                    แทน ,

                    เนื่องจาก ค่าต่ำสุดและค่าสูงสุด อยู่ด้านเดียวกัน

                    ค่ารากจะอยู่ในช่วงที่มากกว่า 0

                    ไม่อยู่ในช่วงนี้

                   

                   

                    ค่ารากบนช่วง [1,2]

 

                จากตัวอย่างนี้ จะเห็นได้ว่าฟังก์ชันมีค่ารากเพียงค่าเดียว แต่ไม่ได้แสดงให้เห็นว่า

ค่ารากนั้นมีค่าเท่ากับเท่าใด แต่สามารถระบุช่วงของค่ารากได้

Advertisement


TAGS ที่เกี่ยวข้อง >> ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ , << คลิกอ่านเพิ่มเติม

≡ เรื่องอื่นๆ ที่น่าอ่าน ≡

คลิกอ่าน!
คลิกอ่าน!
เธลีส (Thales) นักคณิตศาสตร์

เธลีส (Thales) นักคณิตศาสตร์
เปิดอ่าน 13,273 ครั้ง
คลิกอ่าน!
คลิกอ่าน!
ห.ร.ม. และ ค.ร.น.

ห.ร.ม. และ ค.ร.น.
เปิดอ่าน 39,939 ครั้ง
คลิกอ่าน!
แผนภาพของเวน (Venn Diagram)

แผนภาพของเวน (Venn Diagram)
เปิดอ่าน 32,822 ครั้ง
คลิกอ่าน!
Advertisement

≡ เรื่องน่าสนใจในหมวดหมู่นี้ ≡
การวัดมุมในระนาบดิ่ง☕ คลิกอ่านเลย
การวัดมุมในระนาบดิ่ง
เปิดอ่าน 12,613 ครั้ง
การวิเคราะห์และการตีความหมายข้อมูล (Analysis and Interpretation of Data)☕ คลิกอ่านเลย
การวิเคราะห์และการตีความหมายข้อมูล (Analysis and Interpretation of Data)
เปิดอ่าน 21,601 ครั้ง
ความรู้ทั่วไปเกี่ยวกับคณิตศาสตร์☕ คลิกอ่านเลย
ความรู้ทั่วไปเกี่ยวกับคณิตศาสตร์
เปิดอ่าน 61,142 ครั้ง
สรุปสูตรไฮเพอร์โบลา☕ คลิกอ่านเลย
สรุปสูตรไฮเพอร์โบลา
เปิดอ่าน 43,874 ครั้ง
ปีอธิกสุรทิน ☕ คลิกอ่านเลย
ปีอธิกสุรทิน
เปิดอ่าน 18,236 ครั้ง
Advertisment

≡ เรื่องน่าอ่าน/สาระน่ารู้ ≡

เด็กนอนเป็นเวลาปัญญาดี ยิ่งนอนตั้งแต่หัวค่ำยิ่งหัวไวยิ่งกว่าเพื่อนเด็กนอนเป็นเวลาปัญญาดี ยิ่งนอนตั้งแต่หัวค่ำยิ่งหัวไวยิ่งกว่าเพื่อน
เปิดอ่าน 11,039 ครั้ง
ลายมือคนใจมีเมตตาธรรมลายมือคนใจมีเมตตาธรรม
เปิดอ่าน 10,611 ครั้ง
สุภาษิต หรือ ภาษิต  สุภาษิต หรือ ภาษิต
เปิดอ่าน 31,205 ครั้ง
การส่งเสริมนิสัยรักการอ่านการส่งเสริมนิสัยรักการอ่าน
เปิดอ่าน 65,442 ครั้ง
การกัวซาบำบัดโรคการกัวซาบำบัดโรค
เปิดอ่าน 9,799 ครั้ง

เกมส์ รวมเกมส์สนุกๆ มากมาย
สนามเด็กเล่น

แหล่งรวมเกมส์ เกมส์ให้เล่นมากมาย ศูนย์รวมเกมส์สนุกๆ เกมส์ความรู้ เกมส์ลับสมอง เกมส์ประลองยุทธ แหล่งรวบรวมข้อมูล เกมส์ เกมส์ออนไลน์ เกมส์มันๆ เกมส์ตัดผม ไว้มากมายที่นี่ ให้เด็กๆได้เลือกเล่นมากมาย คลิกเลย

 
 
สนามเด็กเล่น
เกมส์ รวมเกมส์ เกมส์แข่งรถ เกมส์ต่อสู้ เกมส์ภาษา เกมส์วางระเบิด เกมส์แต่งตัว เกมส์ท่องเที่ยว เกมส์หมากฮอส เกมส์ผจญภัย เกมส์เต้น เกมส์รถ เกมส์ดนตรี เกมส์ขายของ เกมส์ฝึกสมอง เกมส์เด็กๆ เกมส์ปลูกผัก เกมส์การ์ด เกมส์จับผิดภาพ เกมส์ตลก เกมส์ตัดผม เกมส์ก้านกล้วย เกมส์ทําอาหาร เกมส์เลี้ยงสัตว์ เกมส์ผี เกมส์จับคู่ เกมส์กีฬา เกมส์เศรษฐี เกมส์ฝึกทักษะ เกมส์วางแผน เกมส์จีบหนุ่ม เกมส์มาริโอ เกมส์ระบายสี เกมส์จีบสาว เกมส์เบ็นเท็น เกมส์ยิง เกมส์ยาน เกมส์สร้างเมือง เกมส์มันส์ๆ เกมส์แต่งบ้าน เกมส์ความรู้
หมวดหมู่เนื้อหา
[ข่าว/ประกาศ] [บทความเทคโนโลยีการศึกษา] [Technology] [e-Learning] [Graphics & Multimedia] [OpenSource & Freeware] [ซอฟต์แวร์แนะนำ] [ทฤษฎีทางการศึกษา] [เครื่องมือและเทคนิคการถ่ายภาพ] [Hot Issue] [Research Library] [Questions in ETC] [แวดวงนักเทคโนฯ] [ข่าวการศึกษา] [คุณครูควรรู้ไว้] [คณิตศาสตร์] [วิทยาศาสตร์] [ภาษาต่างประเทศ] [ภาษาไทย] [สุขศึกษาและพลศึกษา] [สังคมศึกษา ศาสนาและวัฒนธรรม] [ศิลปศึกษาและดนตรี] [การงานอาชีพและเทคโนโลยี] [My Profile] [เรื่องราวจากสมาชิก] [เตรียมประเมินวิทยฐานะ] [ความรู้ทั่วไป] [ผลงานวิชาการเล่มเต็ม] [ข่าวจากกระทรวงศึกษาธิการ] [สาระดีๆจากนานมีบุ๊คส์] [ภาพอบรม/สัมมนา] [การวิจัยทางการศึกษา] [โปรแกรม/เครื่องมือสำหรับครู] [ผู้สนับสนุน] [เกมส์] [งานราชการ/รัฐวิสาหกิจ/บริการสังคม] [คลิปวิดีโอ] [บทความการศึกษา] [infoGraphics] [เกาะกระแสโลกสังคมออนไลน์]
ข่าวล่าสุด

ครูบ้านนอกดอทคอม

เว็บไซต์เพื่อครู ข่าวการศึกษา ความรู้ การศึกษาไทย

      kroobannok.com

© 2000-2020 Kroobannok.com  
All rights reserved.


Design by : kroobannok.com


ครูบ้านนอกดอทคอม
การจัดอันดับของ Truehits Web Directory

วิธีนำแบนเนอร์ของครูบ้านนอก.คอมไปแปะในเว็บท่าน บันทึกภาพแบนเนอร์นี้และลิงค์มาที่เราครับ (มีแบนเนอร์ 2 แบบ)
 

ครูบ้านนอกดอทคอม เว็บไซต์ของครูตัวเล็กๆ คนหนึ่ง ที่หวังเพียง ใช้เป็นช่องทางในการสื่อสาร แลกเปลี่ยน เพิ่มพูนความรู้ และให้ข่าวสาร ที่ทันสมัยต่อเหตุการณ์แก่คุณครู ผู้ปฏิบัติงานในทุกพื้นที่ของประเทศไทย เพื่อความเจริญงอกงามในปัญญา และเจริญก้าวหน้าในวิชาชีพ

เว็บนี้ถือกำเนิดเมื่อ 5 มกราคม 2548

Email : kornkham@hotmail.com
Tel : 081-3431047

สนใจสนับสนุนเรา โดยลงโฆษณา
คลิกดูรายละเอียดที่นี่ครับ