ค้นหาทุกอย่างในเว็บครูบ้านนอก :
ชุมชนครู บุคลากรทางการศึกษา และนักเรียน แหล่งความรู้สำหรับครู นักเรียน ข่าวการศึกษา ห้องสมุดความรู้ทุกกลุ่มสาระการเรียนรู้ และความรู้ทั่วไป เผยแพร่ผลงานวิชาการ ที่นี่


ข่าวการศึกษา     ความรู้ทั่วไป     งานราชการ/รัฐวิสาหกิจ/บริการสังคมคณิตศาสตร์  ▶ ข่าว/บทความ ▶ หน้าแรก

ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ


คณิตศาสตร์ เปิดอ่าน : 34,883 ครั้ง
Advertisement

ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ

Advertisement

 

ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ

 

                ฟังก์ชัน จะมีค่ารากของสมการก็ต่อเมื่อสามารถหาค่า x ที่ทำให้ฟังก์ชัน นี้มีค่าเท่ากับศูนย์ 

เราจะกล่าวว่า มีค่าราก และเรียกค่า x นี้ว่า ค่ารากของสมการ =0

 

ตัวอย่าง จงตรวจสอบว่าฟังก์ชัน มีค่ารากของสมการหรือไม่

วิธีทำ    เนื่องจากค่ารากของสมการคือค่าที่ทำให้สมการมีค่าเป็นศูนย์

             ทำให้ได้ว่า

                                        

                                                       

            นั่นคือ ค่า x = 3 และค่า x = 5 เป็นค่าที่ทำให้ฟังก์ชัน มีค่าเป็นศูนย์      

              ดังนั้นฟังก์ชัน มีค่าราก

 

เนื่องจากในการศึกษาวิชาคณิตศาสตร์นั้น มีสมการหรือฟังก์ชันที่ไม่ได้อยู่ในรูปแบบที่ง่าย แก่การแก้สมการหาค่าราก  ดังนั้นจึงมีหลักในการวิเคราะห์ค่ารากของสมการเพื่อช่วยให้การแก้ปัญหา มีความสะดวกมากยิ่งขึ้น

 

การวิเคราะห์ค่ารากของสมการ

    1. สมการนั้นมีค่ารากที่แท้จริง(Real Roots) หรือไม่

    2. สมการนั้นมีค่ารากของสมการเพียงค่าเดียว (Single Roots) หรือมีหลายค่า (Multiple Roots)

    3. ถ้าสมการมีค่าราก จะหาค่ารากได้อย่างไร

      ทั้ง 3 ข้อนี้เป็นหลักในการวิเคราะห์และคำนวณหาค่ารากของสมการ คำตอบของทั้ง 3 คำถามนี้

สามารถศึกษาได้จากสื่อการสอนบนเครือข่ายอินเทอร์เน็ตชุดนี้

 

ทฤษฎีบท มีค่าราก m-1 ค่าที่ P ก็ต่อเมื่อ และ

 

ตัวอย่าง จงตรวจสอบว่า ฟังก์ชัน มีค่ารากหรือไม่ ถ้ามีค่าราก จะมีกี่ค่า

              วิธีทำ เนื่องจาก แสดงว่าฟังก์ชัน มีค่าราก

                        พิจารณา

                                     

                        จากทฤษฎีบทข้างต้น จะได้ว่าฟังก์ชัน มีค่ารากและมีเพียงค่าเดียวเท่านั้นคือ x = 0

 

ตัวอย่าง จงหาช่วง [a,b] ที่ ของ และ f(P) = 0 และ

            วิธีทำ จากทฤษฎีบท จะได้ว่า

                          

                     จาก

                                       

                                               

                    แทน , เป็นค่าต่ำสุดสัมพัทธ์

                    แทน , เป็นค่าสูงสุดสัมพัทธ์

                    แทน ,

                    แทน ,

                    เนื่องจาก ค่าต่ำสุดและค่าสูงสุด อยู่ด้านเดียวกัน

                    ค่ารากจะอยู่ในช่วงที่มากกว่า 0

                    ไม่อยู่ในช่วงนี้

                   

                   

                    ค่ารากบนช่วง [1,2]

 

                จากตัวอย่างนี้ จะเห็นได้ว่าฟังก์ชันมีค่ารากเพียงค่าเดียว แต่ไม่ได้แสดงให้เห็นว่า

ค่ารากนั้นมีค่าเท่ากับเท่าใด แต่สามารถระบุช่วงของค่ารากได้

หน้าหนาวแล้ว คุณครูสนใจไหม DoDo เก้าอี้แคมป์ปิ้ง รับน้ำหนักได้เยอะ พร้อมกระเป๋าจัดเก็บ โครงอลูมิเนียมรับน้ำหนักได้200KG ในราคา ฿189 - ฿509 ที่ Shopee

https://s.shopee.co.th/9pNuttuIUm?share_channel_code=6


ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ

Advertisement

≡ เรื่องอื่นๆ ที่น่าอ่าน ≡

เรียนคณิต ใครว่ายาก

เรียนคณิต ใครว่ายาก


เปิดอ่าน 17,262 ครั้ง
จำนวนเฉพาะ (Prime Number) คืออะไร?

จำนวนเฉพาะ (Prime Number) คืออะไร?


เปิดอ่าน 173,158 ครั้ง
การวัดระยะทางบนพื้นราบ

การวัดระยะทางบนพื้นราบ


เปิดอ่าน 30,448 ครั้ง
เธลีส (Thales) นักคณิตศาสตร์

เธลีส (Thales) นักคณิตศาสตร์


เปิดอ่าน 19,599 ครั้ง
เรื่องของกราฟ

เรื่องของกราฟ


เปิดอ่าน 19,801 ครั้ง
ประวัติเครื่องหมายหาร  (÷)

ประวัติเครื่องหมายหาร (÷)


เปิดอ่าน 266,554 ครั้ง
ห.ร.ม. และ ค.ร.น.

ห.ร.ม. และ ค.ร.น.


เปิดอ่าน 80,754 ครั้ง
พื้นที่ของรูปหลายเหลี่ยม

พื้นที่ของรูปหลายเหลี่ยม


เปิดอ่าน 76,637 ครั้ง
การวัดมุมในระนาบดิ่ง

การวัดมุมในระนาบดิ่ง


เปิดอ่าน 18,120 ครั้ง
การวัดความสูง

การวัดความสูง


เปิดอ่าน 34,492 ครั้ง

:: เรื่องปักหมุด ::

ประวัติศาสตร์ของ ¶

ประวัติศาสตร์ของ ¶

เปิดอ่าน 20,051 ☕ คลิกอ่านเลย

Advertisement

≡ เรื่องน่าสนใจในหมวดหมู่นี้ ≡
ตัวอย่างข้อสอบคณิตศาสตร์ ตามกรอบการประเมิน PISA 2022
ตัวอย่างข้อสอบคณิตศาสตร์ ตามกรอบการประเมิน PISA 2022
เปิดอ่าน 23,998 ☕ คลิกอ่านเลย

เคล็ดเด็กเก่งวิชา เรขาคณิต-พีชคณิต
เคล็ดเด็กเก่งวิชา เรขาคณิต-พีชคณิต
เปิดอ่าน 20,288 ☕ คลิกอ่านเลย

สรุปสูตร วงกลม
สรุปสูตร วงกลม
เปิดอ่าน 89,289 ☕ คลิกอ่านเลย

การบวกและการลบ
การบวกและการลบ
เปิดอ่าน 31,671 ☕ คลิกอ่านเลย

Fast Math Trick จินตคณิต สูตรคิดเร็ว การหาร
Fast Math Trick จินตคณิต สูตรคิดเร็ว การหาร
เปิดอ่าน 38,146 ☕ คลิกอ่านเลย

ประวัติย่อของคณิตศาสตร์ : กาลิเลโอ กาลิเลอี
ประวัติย่อของคณิตศาสตร์ : กาลิเลโอ กาลิเลอี
เปิดอ่าน 141,161 ☕ คลิกอ่านเลย

≡ เรื่องน่าอ่าน/สาระน่ารู้ ≡

อภิปัญหาหนี้ครู...ปมที่แก้ไม่ตก 11 ปีลุกลาม 1.2 ล้านล้าน
อภิปัญหาหนี้ครู...ปมที่แก้ไม่ตก 11 ปีลุกลาม 1.2 ล้านล้าน
เปิดอ่าน 11,256 ครั้ง

การเขียนที่ถูกต้องของคำว่า "โรฮีนจา-เมียนมา" แทน "โรฮิงญา-เมียนมาร์"
การเขียนที่ถูกต้องของคำว่า "โรฮีนจา-เมียนมา" แทน "โรฮิงญา-เมียนมาร์"
เปิดอ่าน 23,930 ครั้ง

ความเข้าใจเรื่องแผ่นดินไหว: ประเทศไทยกับ 3 รอยเลื่อนมีพลัง และพื้นที่เสี่ยงภัย 5 ระดับ
ความเข้าใจเรื่องแผ่นดินไหว: ประเทศไทยกับ 3 รอยเลื่อนมีพลัง และพื้นที่เสี่ยงภัย 5 ระดับ
เปิดอ่าน 24,415 ครั้ง

โซเชียลเน็ตเวิร์กทำครอบครัวร้าว
โซเชียลเน็ตเวิร์กทำครอบครัวร้าว
เปิดอ่าน 15,665 ครั้ง

กระชับรูขุมขนด้วยน้ำแข็ง
กระชับรูขุมขนด้วยน้ำแข็ง
เปิดอ่าน 12,306 ครั้ง

เกมส์ รวมเกมส์สนุกๆ มากมาย
สนามเด็กเล่น

แหล่งรวมเกมส์ เกมส์ให้เล่นมากมาย ศูนย์รวมเกมส์สนุกๆ เกมส์ความรู้ เกมส์ลับสมอง เกมส์ประลองยุทธ แหล่งรวบรวมข้อมูล เกมส์ เกมส์ออนไลน์ เกมส์มันๆ เกมส์ตัดผม ไว้มากมายที่นี่ ให้เด็กๆได้เลือกเล่นมากมาย คลิกเลย

 
หมวดหมู่เนื้อหา
เนื้อหา แยกตามหมวดหมู่ สามารถเลืออ่านได้ตามหมวดหมู่ที่นี่


· Technology
· บทความเทคโนโลยีการศึกษา
· e-Learning
· Graphics & Multimedia
· OpenSource & Freeware
· ซอฟต์แวร์แนะนำ
· การถ่ายภาพ
· Hot Issue
· Research Library
· Questions in ETC
· แวดวงนักเทคโนฯ

· ความรู้ทั่วไป
· คณิตศาสตร์
· วิทยาศาสตร์และเทคโนโลยี
· ภาษาต่างประเทศ
· ภาษาไทย
· สุขศึกษาและพลศึกษา
· สังคมศึกษา ศาสนาฯ
· ศิลปศึกษาและดนตรี
· การงานอาชีพ

· ข่าวการศึกษา
· ข่าวตามกระแสสังคม
· งาน/บริการสังคม
· คลิปวิดีโอยอดนิยม
· เกมส์
· เกมส์ฝึกสมอง

· ทฤษฎีทางการศึกษา
· บทความการศึกษา
· การวิจัยทางการศึกษา
· คุณครูควรรู้ไว้
· เตรียมประเมินวิทยฐานะ
· ผลงานวิชาการเล่มเต็ม
· เครื่องมือสำหรับครู

ครูบ้านนอกดอทคอม

เว็บไซต์เพื่อครู ข่าวการศึกษา ความรู้ การศึกษาไทย

      kroobannok.com

© 2000-2020 Kroobannok.com  
All rights reserved.


Design by : kroobannok.com


ครูบ้านนอกดอทคอม
การจัดอันดับของ Truehits Web Directory

วิธีนำแบนเนอร์ของครูบ้านนอก.คอมไปแปะในเว็บท่าน บันทึกภาพแบนเนอร์นี้และลิงค์มาที่เราครับ (มีแบนเนอร์ 2 แบบ)
 

ครูบ้านนอกดอทคอม เว็บไซต์ของครูตัวเล็กๆ คนหนึ่ง ที่หวังเพียง ใช้เป็นช่องทางในการสื่อสาร แลกเปลี่ยน เพิ่มพูนความรู้ และให้ข่าวสาร ที่ทันสมัยต่อเหตุการณ์แก่คุณครู ผู้ปฏิบัติงานในทุกพื้นที่ของประเทศไทย เพื่อความเจริญงอกงามในปัญญา และเจริญก้าวหน้าในวิชาชีพ

เว็บนี้ถือกำเนิดเมื่อ 5 มกราคม 2548

Email : kornkham@hotmail.com
Tel : 096-7158383

สนใจสนับสนุนเรา โดยลงโฆษณา
คลิกดูรายละเอียดที่นี่ครับ