ค้นหาทุกอย่างในเว็บครูบ้านนอก :
ชุมชนครู บุคลากรทางการศึกษา และนักเรียน แหล่งความรู้สำหรับครู นักเรียน ข่าวการศึกษา ห้องสมุดความรู้ทุกกลุ่มสาระการเรียนรู้ และความรู้ทั่วไป เผยแพร่ผลงานวิชาการ ที่นี่


หน้าแรกครูบ้านนอก > ข่าว/บทความ > คณิตศาสตร์ > เรื่องของเลขศูนย์
เรื่องของเลขศูนย์
คณิตศาสตร์ โพสต์เมื่อวันที่ : 4 ก.ค. 2551 เปิดอ่าน : 25,500 ครั้ง
☰แชร์เลย >  
เพิ่มเพื่อน
Advertisement

เรื่องของเลขศูนย์
Advertisement

สมัยดึกดำบรรพ์

ไม่น่าเชื่อก็ต้องเชื่อนะครับว่า แต่ก่อนเนี่ยไม่มีเลขศูนย์ ไม่มีใครรู้จักเลขศูนย์เลย คนสมัยก่อนนั้นรู้จักการนับแค่ หนึ่ง สอง และมากมาย ครับ หรือถ้าไม่นับแบบนั้น บางแถบก็นับเป็นหน่วยของห้า (ก็นิ้วมือนี่แหละครับ) หรือหน่วยของสิบ (ก็นิ้วมือสองข้าง) หรือหน่วยของยี่สิบ (นิ้วมือนิ้วเท้า)

แล้วทำไมแต่ก่อนคนไม่รู้จักเลขศูนย์ คำตอบง่ายมากครับ คือเพราะเขาไม่ใช้ครับ คณิตศาสตร์ในสมัยก่อนโบราณกาล ก็ใช้นับสัตว์เลี้ยง เวลานับก็เริ่มจากหนึ่ง

หรือพอมีวิทยการมากขึ้นหน่อย ก็เอาตัวเลขมาสัมพันธ์กับเรขาคณิต เพราะฉะนั้นก็ไม่มีเลขศูนย์อยู่ดี พูดกันง่ายๆ ไม่รู้จักเลขตัวนี้ในสารบบ

เลขศูนย์มายังไง

เลขศูนย์นั้นมาจากอินเดียครับ แล้วเข้าสู่ยุโรปหลังจากที่มองโกลนั้นตีตะลุยโลก ทำให้เลขศูนย์นั้นเริ่มเผยแพร่เข้าไปในยุโรป ซึ่งนั่นก็เป็นช่วงคริตศตวรรษที่14 แต่เลขศูนย์นั้นคนเพิ่งเริ่มนิยมเมื่อไม่ถึงสองร้อยปีที่ผ่านมานี้เองนะครับ

แล้วทำไมคนถึงกลัวเลขศูนย์

ลองคิดดูสิครับ ทำไมคนถึงกลัวเลขศูนย์ ศูนย์หารอะไรก็ไม่ได้ คูณอะไรก็ได้ศูนย์ บวกอะไรก็ได้ตัวเดิม เรียกว่าในบรรดาตัวเลจทั้งหมด เลขศูนย์นี่พิเศษสุดๆ

เรื่องนี้เป็นเพราะว่า คนตะวันตกนั้น อยู่ในโลกวิทยาการของกรีกครับ และในปรัชญาของกรีกนั้นอยู่บนพื้นฐานว่าไม่มีช่องว่างครับ ซึ่งก็เหมือนจะไม่ใช่เรื่องใหญ่อะไรใช่ไหมครับ ก็ถ้ามันมีปัญหามาก ก็ทิ้งไปก็ได้

แต่ที่มีปัญหาก็เพราะว่า

จักรวาลของคนกรีกนั้น เชื่อว่าโลกเป็นจุดศูนย์กลางของจักรวาล จากโลกถัดไปก็เป็นดวงจันทร์ เป็นดาวอื่นๆ ไปเรื่อยๆ (เมื่อหลายพันปีมาแล้วนะครับ)

รูปนี้เป็นรูปจักรวาลในความคิดของปิธากอรัส ที่มา http://visav.phys.uvic.ca/~babul/AstroCourses/P303/Images/greek_Pythagorean.jpg

เอาล่ะครับ แล้วก็มีคำถามตามมาครับว่า แล้วใครทำให้โลกหมุน ดาวหมุน ตรงนี้แหละครับที่ทำให้คนตะวันตกนั้นงมโข่งไม่รู้จักเลขศูนย์เป็นพันๆปี

เพราะอริสโตเติลบอกว่า พระเจ้าไง ที่เป็นคนหมุน

ฮั่นแน่ ในเมื่อพระเจ้าเป็นคนหมุน ดังนั้นวิทยาการใหม่ๆที่ท้าทายความคิดเช่นโลกไม่เป็นจุดศูนย์กลาง รวมไปถึงเลขศูนย์ด้วย ก็ย่อมจะไม่เป็นที่พอใจของโบสถ์ และหลายคนได้ถูกฆ่าตายไปก็เพราะว่าไม่เชื่อในพระเจ้านี่แหละ

และเพราะศูนย์นั้นไม่มีในปรัชญากรีก ก็ในเมื่อคณิตศาสตร์ของกรีกนั้น พี่ท่านเอาไปสอดคล้องกับเรขาคณิต เลขศูนย์ก็ไม่รู้จักกันเข้าไปใหญ่ ชาวตะวันตกก็ไม่สนใจเรื่อยมาครับ ทั้งๆที่บางครั้งบางคราวก็มีคนคิดเรื่องนี้ขึ้น

การเริ่มต้นการเดินทางของเลขศูนย์

เลขศูนย์เริ่มเข้ามาพร้อมกับการบุกรุกของชาวมองโกลต่อโลกตะวันตก เมื่อคนมองโกลนั้น เผยแพร่วิทยาการต่างๆมากมายของโลกตะวันออกเข้าสู่โลกตะวันตก (ถ้าอยากรู้เพิ่มเติม เชิญอ่านที่ series ชุดเจงกีสข่านครับ แต่ชุดนั้นไม่มีเรื่องเลขนะครับ)

ในช่วงที่เข้ามาแรกๆนั้น โป๊ปนั้นก็ไม่รู้ว่าเลขศูนย์นี่แหละครับที่จะมาท้าทายถึง ปรัชญาของศาสนาครับ เพราะว่าศูนย์นั้นมาเป็นแพ็คเกจครับ ถ้ามีศูนย์ก็ต้องมีอินฟินีตี้ (infinity หรืออนันต์ไปด้วย)

เพราะฉะนั้นศูนย์ก็เริ่มมีการศึกษาขึ้นครับ แต่เรื่องแรกที่เอาเลขศูนย์มาประยุกต์ใช้คือการวาดรูปครับ แล้วทำไมศูนย์กับอินฟินิตี้นั้นมาคู่กัน ดูรูปนี้เลยครับ

 

รูปนี้มาจาก http://www.mydigitalnoise.com/images/20051031212952_vanishing%20point%20-%20small.jpg

รูปนี้ก็คือรูป perspective ธรรมดาที่เรารู้จักกันดีใช่ไหมครับ (ภาพที่มีจุดศูนย์กลางของรูป เป็นจุดเดียว) แต่เห็นไหมครับว่าในขณะที่เรามองเห็นไกลสุดกู่ (อินฟินิตี้) เราเห็นสิ่งๆนั้นเป็นจุดครับ

และนี่แหละครับคือจุดเริ่มต้นของการเข้ามาของเลขศูนย์สู่ตะวันตกครับ เมื่อมีศิลปินที่ชื่อ Brunelleschi ได้วาดภาพ perspective รูปแรกของโลกในปี 1425 วิธีการก็คือการมองลอดรูเล็กๆ ผ่านกระจกครับ แล้วรูปแรกก็คือการวาดรูปโดมของเมืองฟลอเรนซ์ครับ (รูปวาดหาไม่เจอครับ แต่เทคนิคและวิธีนั้นดูได้ที่นี่ครับ)

และแล้วเมื่อราวคริตศตวรรษที่ 16-17 เลขศูนย์นั้น ก็เข้ามามีบทบาทมากขึ้น ไม่ว่าจะเป็นการค้นพบความดันบรรยากาศของปาสคาล ที่พบว่ามีสุญญากาศในหลอดบารอมิเตอร์

และแล้วปัญหาเรื่องศูนย์นั้น ก็เริ่มที่จะคลี่คลายลงด้วยดี แต่ช้าก่อน

เลขศูนย์กับแคลคูลัส

เพราะก่อนหน้าที่เราจะรู้จักเลขศูนย์เป็นอย่างดีนั้น มี Calculus เข้ามาครับ ซึ่งคิดโดยทั้งนิวตันและLiebnitz นั้นตอนนั้นก็ยังไม่รู้จักเลขศูนย์เท่าไร แต่ก็คิดแคลคูลัสขึ้นมาได้

แคลคูลัสคืออะไร แคลคูลัสคือวิชาว่าด้วยการหาความเปลี่ยนแปลงครับ เช่น เรารู้ว่าอัตราการเปลี่ยนแปลงของระยะทางต่อเวลา เรียกว่าความเร็ว อัตราการเปลี่ยนแปลงความเร็วต่อเวลา เรียกว่าความเร่ง รวมไปถึงความชันของกราฟก็คืออัตราการเปลี่ยนแปลงเหมือนกัน

แคลคูลัสนั้นก็ว่าด้วยเรื่องพวกนี้แหละครับ 

แต่พอเราต้องการหาความเปลี่ยนแปลง ถ้าเราต้องการหาให้ได้แม่นยำที่สุด แล้วทำยังไงครับ

รูปนี้มาจาก http://www.vias.org/calculus/img/04_integration-137.gif

จากรูปด้านบน ถ้าเราต้องการหาความชันของเส้นกราฟ y=x2 ให้ได้แม่นยำที่สุด เราก็ต้องทำให้ a กับ b ใกล้กันมากๆใช่ไหมครับ แล้วใกล้กันที่สุดมันคืออะไรครับ มันก็คือ a=b ถูกไหมครับ แต่ถ้า a=b เราก็จะหาความชันไม่ได้

เพราะว่าความชันคืออัตราส่วน∆y/∆x  แต่ถ้า ∆x ซึ่งก็คือ b-a แล้วถ้าเราต้องการใกล้ๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆกันมาก ซึ่งก็คือ ∆x =0

เอาแล้วไงครับ ปัญหามาแล้ว ∆x =0 มันหารไม่ได้!!!!!!!!!

แล้วนิวตันทำยังไง นิวตันก็บอกว่า อ๋อ ดูนะ ถ้าให้ y=x2

มาดูวิธีนิวตันนะครับ

y+Δy=(x+Δx)2

โดยที่ Δ นี่แทนค่าว่า เล็กๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆมากนะครับ

y+Δy=(x+Δx)2=x2+2xΔx+Δx2

แต่เรารู้ว่า y=x2 เพราะเราก็แทนค่าสิครับ

เราก็จะได้ว่า

 Δy=2xΔx+Δx2

แล้วคราวนี้มาดูวิธีที่นิวตันบอกครับ นิวตันบอกว่า ก็Δx นี่มันน้อยๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆมากแล้ว Δx2 ยิ่ง น้อยๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆๆเข้าไปใหญ่ เพราะฉะนั้นเอาออกเหอะ ทิ้งไว้ก็เกะกะเปล่าๆ มันก็เลยเหลือแค่นี้ครับ

 Δy/Δx=2x แล้วก็จบลงด้วยประการฉะนั้น

แต่ Calculus นั้นมาสมบูรณ์เมื่อ D'Alambert ได้พูดถึง limit ขึ้นมา เราก็ไม่เลยจำเป็นต้องมาคำนึงถึงว่าเราจะเอาศูนย์มาหารอีกต่อไป

นี่แหละครับการเดินทางของเลขศูนย์ในคณิตศาสตร์

แต่ในทางฟิสิกส์นั้น การเดินทางของศูนย์นั้นยังไม่จบครับ เพราะในทางฟิสิกส์นั้น เลขศูนย์คือจุดบรรจบกันของทฤษฏีของนิวตันกับทฤษฏีของไอน์สไตน์ รวมไปถึงจุดกำเนิดทฤษฏีสตริงด้วย และจะเป็นจุดกำเนิดของอีกหลายๆทฤษฏี

โดยสรุปนะครับ

ทฤษฏีนิวตัน ว่าด้วยการเคลื่อนที่ของของชิ้นใหญ่ๆครับ  

ทฤษฏีสัมพันธภาพของไอน์สไตน์ ว่าด้วยมีกรอบอ้างอิงที่ไม่ว่าจะวัดอะไรมุมไหน แต่ด้วยกรอบนี้ เป็นกรอบที่สมบูรณ์ ใครอยู่ในกรอบนี้ ก็จะเห็นการเคลื่อนที่เหมือนกัน ไม่ใช่การเคลื่อนที่แบบสัมพัทธ์ (อันนี้มีสี่มิติครับ สามมิติ(กว้าง ยาว สูง) แล้วก็เวลา

ทฤษฏีสตริง ว่าด้วย การอธิบายปรากฏการณ์ต่างๆด้วยการสั่นของเส้น ซึ่งมีถึง 11 มิติ ในการอธิบายปรากฏการณ์ต่างๆ

อันนี้แถมครับ Chaos theory ทฤษฏีมั่วซั่ว เชื่อว่าทุกอย่างถึงแม้มันจะดูว่ามั่วขนาดไหน สิ่งต่างๆเหล่านี้นั้นมีรูปแบบ pattern ซ่อนอยู่เสมอครับ

ที่มา Seife, C. Zero: The bilography of a dangerous idea. Penguin Books, NY. 2000

 

ขอบคุณข้อมูลจาก http://gotoknow.org/blog/mathbeauty/91599


TAGS ที่เกี่ยวข้อง >> เรื่องของเลขศูนย์ เรื่องของเลขศูนย์ << คลิกอ่านเพิ่มเติม

Advertisement

≡ เรื่องอื่นๆ ที่น่าอ่าน ≡

สูตรลูกบิด สูตรรูบิค Rubik

สูตรลูกบิด สูตรรูบิค Rubik's Cube
เปิดอ่าน 136,793 ครั้ง
วิธีนี้ดีนะ..คณิตฯ ประถม ลบเลขไม่ต้องยืม

วิธีนี้ดีนะ..คณิตฯ ประถม ลบเลขไม่ต้องยืม
เปิดอ่าน 46,584 ครั้ง
การเรียนรู้คณิตศาสตร์โดยโครงงาน

การเรียนรู้คณิตศาสตร์โดยโครงงาน
เปิดอ่าน 21,860 ครั้ง
การคิดเลขในใจ

การคิดเลขในใจ
เปิดอ่าน 35,799 ครั้ง
แบบฝึกคิดเลขในใจ ระดับ 1 - ระดับ 5

แบบฝึกคิดเลขในใจ ระดับ 1 - ระดับ 5
เปิดอ่าน 6,567 ครั้ง
เรื่องของกราฟ

เรื่องของกราฟ
เปิดอ่าน 17,958 ครั้ง
จินตคณิต สูตรคิดเร็ว สูตรคณิต คิดเร็ว

จินตคณิต สูตรคิดเร็ว สูตรคณิต คิดเร็ว
เปิดอ่าน 113,625 ครั้ง
จำนวนตรรกยะ

จำนวนตรรกยะ
เปิดอ่าน 28,979 ครั้ง
พิชิตคณิตให้เป็นเรื่องง่าย

พิชิตคณิตให้เป็นเรื่องง่าย
เปิดอ่าน 52,823 ครั้ง
Fast Math Trick จินตคณิต สูตรคิดเร็ว เลขยกกำลัง 2

Fast Math Trick จินตคณิต สูตรคิดเร็ว เลขยกกำลัง 2
เปิดอ่าน 32,294 ครั้ง
ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ

ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ
เปิดอ่าน 29,201 ครั้ง
เอกภพสัมพัทธ์ (Relative Universe)

เอกภพสัมพัทธ์ (Relative Universe)
เปิดอ่าน 33,686 ครั้ง
ประวัติ แคลคูลัส

ประวัติ แคลคูลัส
เปิดอ่าน 22,749 ครั้ง
ประวัติเครื่องหมายหาร  (÷)

ประวัติเครื่องหมายหาร (÷)
เปิดอ่าน 199,256 ครั้ง
สูตรลับการคูณแม่ 9 โดยใช้นิ้วมือทั้ง 10 นิ้ว(สุดยอดครับ)

สูตรลับการคูณแม่ 9 โดยใช้นิ้วมือทั้ง 10 นิ้ว(สุดยอดครับ)
เปิดอ่าน 36,209 ครั้ง

:: เรื่องปักหมุด ::

สรุปสูตรวงรี
สรุปสูตรวงรี
เปิดอ่าน 78,266 ☕ คลิกอ่านเลย

Advertisement

≡ เรื่องน่าสนใจในหมวดหมู่นี้ ≡
การเรียนรู้คณิตศาสตร์โดยโครงงาน
การเรียนรู้คณิตศาสตร์โดยโครงงาน
เปิดอ่าน 21,860 ☕ คลิกอ่านเลย

แนะครูกระตุ้นเด็กขี้สงสัย
แนะครูกระตุ้นเด็กขี้สงสัย
เปิดอ่าน 39,271 ☕ คลิกอ่านเลย

พิสูจน์กฎคณิตศาสตร์โดยใช้ภาพ
พิสูจน์กฎคณิตศาสตร์โดยใช้ภาพ
เปิดอ่าน 18,124 ☕ คลิกอ่านเลย

ประวัติ แคลคูลัส
ประวัติ แคลคูลัส
เปิดอ่าน 22,749 ☕ คลิกอ่านเลย

คณิตศาสตร์เกิดขึ้นได้อย่างไร
คณิตศาสตร์เกิดขึ้นได้อย่างไร
เปิดอ่าน 20,728 ☕ คลิกอ่านเลย

ประวัติย่อของคณิตศาสตร์
ประวัติย่อของคณิตศาสตร์
เปิดอ่าน 21,352 ☕ คลิกอ่านเลย

≡ เรื่องน่าอ่าน/สาระน่ารู้ ≡

เจาะ 40 ปีการศึกษาไทย เป๋ไปเป๋มา...ดิ่งลงเหว!! : ศ.พิเศษ ดร.ภาวิช ทองโรจน์
เจาะ 40 ปีการศึกษาไทย เป๋ไปเป๋มา...ดิ่งลงเหว!! : ศ.พิเศษ ดร.ภาวิช ทองโรจน์
เปิดอ่าน 44,333 ครั้ง

โจทย์เลขสิงคโปร์ป่วนเน็ต หาคำตอบกันทั้งโลก
โจทย์เลขสิงคโปร์ป่วนเน็ต หาคำตอบกันทั้งโลก
เปิดอ่าน 15,224 ครั้ง

เช็คให้ดี! "ฮวงจุ้ยห้องพระ" วางตรงไหนเหมาะ วางไม่ดีอาจทำเงินทองรั่วไหล
เช็คให้ดี! "ฮวงจุ้ยห้องพระ" วางตรงไหนเหมาะ วางไม่ดีอาจทำเงินทองรั่วไหล
เปิดอ่าน 101,989 ครั้ง

ความต่างของ 3จี กับ 3.9จี
ความต่างของ 3จี กับ 3.9จี
เปิดอ่าน 10,464 ครั้ง

น้อมรำลึกถึง สมเด็จย่า เส้นทางแม่ฟ้าหลวงทรงสร้างคน
น้อมรำลึกถึง สมเด็จย่า เส้นทางแม่ฟ้าหลวงทรงสร้างคน
เปิดอ่าน 12,312 ครั้ง

เกมส์ รวมเกมส์สนุกๆ มากมาย
สนามเด็กเล่น

แหล่งรวมเกมส์ เกมส์ให้เล่นมากมาย ศูนย์รวมเกมส์สนุกๆ เกมส์ความรู้ เกมส์ลับสมอง เกมส์ประลองยุทธ แหล่งรวบรวมข้อมูล เกมส์ เกมส์ออนไลน์ เกมส์มันๆ เกมส์ตัดผม ไว้มากมายที่นี่ ให้เด็กๆได้เลือกเล่นมากมาย คลิกเลย


 
หมวดหมู่เนื้อหา
เนื้อหา แยกตามหมวดหมู่ สามารถเลืออ่านได้ตามหมวดหมู่ที่นี่


· Technology
· บทความเทคโนโลยีการศึกษา
· e-Learning
· Graphics & Multimedia
· OpenSource & Freeware
· ซอฟต์แวร์แนะนำ
· การถ่ายภาพ
· Hot Issue
· Research Library
· Questions in ETC
· แวดวงนักเทคโนฯ

· ความรู้ทั่วไป
· คณิตศาสตร์
· วิทยาศาสตร์และเทคโนโลยี
· ภาษาต่างประเทศ
· ภาษาไทย
· สุขศึกษาและพลศึกษา
· สังคมศึกษา ศาสนาฯ
· ศิลปศึกษาและดนตรี
· การงานอาชีพ

· ข่าวการศึกษา
· ข่าวตามกระแสสังคม
· งาน/บริการสังคม
· คลิปวิดีโอยอดนิยม
· เกมส์
· เกมส์ฝึกสมอง

· ทฤษฎีทางการศึกษา
· บทความการศึกษา
· การวิจัยทางการศึกษา
· คุณครูควรรู้ไว้
· เตรียมประเมินวิทยฐานะ
· ผลงานวิชาการเล่มเต็ม
· เครื่องมือสำหรับครู

ครูบ้านนอกดอทคอม

เว็บไซต์เพื่อครู ข่าวการศึกษา ความรู้ การศึกษาไทย

      kroobannok.com

© 2000-2020 Kroobannok.com  
All rights reserved.


Design by : kroobannok.com


ครูบ้านนอกดอทคอม
การจัดอันดับของ Truehits Web Directory

วิธีนำแบนเนอร์ของครูบ้านนอก.คอมไปแปะในเว็บท่าน บันทึกภาพแบนเนอร์นี้และลิงค์มาที่เราครับ (มีแบนเนอร์ 2 แบบ)
 

ครูบ้านนอกดอทคอม เว็บไซต์ของครูตัวเล็กๆ คนหนึ่ง ที่หวังเพียง ใช้เป็นช่องทางในการสื่อสาร แลกเปลี่ยน เพิ่มพูนความรู้ และให้ข่าวสาร ที่ทันสมัยต่อเหตุการณ์แก่คุณครู ผู้ปฏิบัติงานในทุกพื้นที่ของประเทศไทย เพื่อความเจริญงอกงามในปัญญา และเจริญก้าวหน้าในวิชาชีพ

เว็บนี้ถือกำเนิดเมื่อ 5 มกราคม 2548

Email : kornkham@hotmail.com
Tel : 081-3431047

สนใจสนับสนุนเรา โดยลงโฆษณา
คลิกดูรายละเอียดที่นี่ครับ