ค้นหาทุกอย่างในเว็บครูบ้านนอก :
ชุมชนครู บุคลากรทางการศึกษา และนักเรียน แหล่งความรู้สำหรับครู นักเรียน ข่าวการศึกษา ห้องสมุดความรู้ทุกกลุ่มสาระการเรียนรู้ และความรู้ทั่วไป เผยแพร่ผลงานวิชาการ ที่นี่


ข่าวการศึกษา     ความรู้ทั่วไป     งานราชการ/รัฐวิสาหกิจ/บริการสังคมคณิตศาสตร์  ▶ ข่าว/บทความ ▶ หน้าแรก

ความพิศวงของตัวเลข จำนวนเฉพาะตอนที่ 1


คณิตศาสตร์ เปิดอ่าน : 30,109 ครั้ง
ความพิศวงของตัวเลข จำนวนเฉพาะตอนที่ 1

Advertisement

เคยคิดไหมครับว่า เวลาเราเรียนเลขเรื่องตัวประกอบนั้น เราจะเรียนเรื่องจำนวนเฉพาะไปทำไม

เคยคิดไหมครับว่า ทำไมเราสามารถส่งเบอร์บัตรเครดิตไปในทางอินเตอร์เน็ตได้ ในขณะที่ยังมีชาวบ้านใช้อินเตอร์เน็ตอยู่ด้วย หรือว่าโทรศัพท์ที่สัญญาณมันรู้ได้ไงว่าเราต้องการคุยกับคนนี้ 

คำตอบอยู่ที่จำนวนเฉพาะนี่แหละครับ 

จำนวนเฉพาะหรือภาษาอังกฤษที่เรียกกันว่า prime number นั้น เป็นที่ศึกษากันอย่างแพร่หลายของนักคณิตศาสตร์มากมายมาเป็นร้อยปีแล้ว

แล้วจำนวนเฉพาะคืออะไร

จำนวนเฉพาะก็คือจำนวนนับที่มีแค่สองตัวเท่านั้นที่หารมันลงตัว คือ 1 และตัวมันเอง

แล้วอย่างนี้หนึ่งถือเป็นจำนวนเฉพาะหรือไม่

คำตอบคือไม่ครับ เพราะ (ตอบแบบกำปั้นทุบดิน) ก็มันมีจำนวนนับแค่ตัวเดียวไง แต่จริงๆแล้วที่เขาไม่นับว่า 1 เป็นจำนวนเฉพาะนั้นมีหลายสาเหตุด้วยกัน แต่สาเหตุหลักๆก็คือ 1 นั้นเป็นเลขพิเศษ (เป็นเอกลักษณ์การคูณ) รวมไปถึงในการแยกตัวประกอบนั้น

เราต้องการแยกตัวประกอบของจำนวนใดๆ ให้เป็นรูปของการคูณของตัวเลขที่น้อยกว่าจำนวนนั้น เช่น 2=1x2 แต่ 1 นั้นมันไม่มีนี่ครับ (แต่ตอนนี้นักคณิตศาสตร์บางคนก็บอกว่า 1 นั้นเป็นจำนวนเฉพาะเหมือนกัน)

 

แล้วจำนวนเฉพาะนั้นมีมาตั้งแ่ต่เมื่อไร

ว่ากันว่ามีมาตั้งแต่สมัยอียิปต์โบราณแล้วครับ ดังนั้นมีมาเป็นพันปีแล้วครับ แต่คนแรกที่พูดถึงจำนวนเฉพาะ ก็คือ ยูคลิด (Euclid) นักปรัชญาชาวกรีกโบราณ (ซึ่งก็เป็นพันปีอีกเหมือนกัน) ยูคลิดนั้นเขียนหนังสือที่ชื่อว่า The Elements หนังสือเรื่อง The Elements นั้นมีถึง 13 เล่มด้วยกัน และเป็นหนังสือพิมพ์มากที่สุดอันดับสองทั่วโลกเลยนะครับ

จะเป็นรองก็เป็นเพียงแต่ไบเบิลเท่านั้น

จำนวนเฉพาะที่ใหญ่ที่สุดและเล็กที่สุด

จำนวนเฉพาะที่เล็กที่สุดนั้นง่ายใช่ไหมครับ เพราะว่ามันคือ 2 แต่ถ้านับ 1 ว่าเป็นจำนวนเฉพาะตามที่นักคณิตศาสตร์บางคนบอกว่าใช่ ก็หนึ่งแหละครับ

แต่ใหญ่ที่สุดหล่ะ คำตอบคือมันยังหาไม่ได้ครับ

ก็เพราะในหนังสือเรื่อง The Elements ของยูคลิดนะสิครับ ทำพิษ

เพราะยูคลิดพิสูจน์ให้เห็นว่า ถ้าเราเจอจำนวนเฉพาะใหญ่มากตัวหนึ่ง แต่หาไปอีกหน่อยเราก็จะเจอที่ใหญ่กว่านั้นอีก

เท่าที่คนหาได้ในตอนนี้ จำนวนเฉพาะที่ใหญ่ที่สุดนั้นคือ 232,582,657 − 1 หาเจอเมื่อ 11 เดือนกันยายน ปี 2006 นี้เองครับโดย Great Internet Mersenne Prime Search

ในนี้มีคำอยู่คำหนึ่งที่ชื่อว่า Mersenne Prime, Mersenne Prime นั้นเป็นวิธีการหาจำนวนเฉพาะวิธีหนึ่งครับ จากสมการ

Mn=2n-1

Mn นั้นจะเป็นจำนวนเฉพาะ ถ้า n เป็นจำนวนเฉพาะครับ แต่จริงๆแล้ววิธีนี้ ก็ไม่ใช่จะหาจำนวนเฉพาะได้ทุกตัวหรอกนะครับ เพราะว่า ลองแทน n=11,

M11=211-1 =2047

แต่ 2047 มันหารได้ด้วย 23 กับ 89 ลงตัว

วิธีการตรวจดูว่าตัวเลขไหนที่เป็นจำนวนเฉพาะ 

แล้วมีวิธีไหนที่เราจะรู้ได้ว่าตัวเลขนั้น เช่น N เป็นจำนวนเฉพาะ

วิธีแรกก็คือ ก็ลองหารดูสิครับหารตั้งแต่ 1 ถึงตัวมันเลย ก็คือ N วิธีนี้ดูเหนื่อยใช่ไหมครับ งั้นก็เอาใหม่ ก็ลองหารด้วย 1 ถึง sqrt(n) ก็ลดลงได้เยอะ แต่ก็ยังช้าอยู่ดีใช่ไหมครับ

งั้นคราวนี้มาลองวิธีฉลาดๆดูบ้าง

วิธีฉลาดๆเช่น Fermat’s little theorem

Fermat นั้นเป็นนักคณิตศาสตร์ชาวฝรั่งเศสครับ แต่จะบอกว่าเป็นนักคณิตศาสตร์ก็ไม่เชิง เพราะว่า Fermat นั้น หากินทางกฎหมายครับ แค่คิดเลขเป็นงานอดิเรกเท่านั้น

Fermat’s little theorem บอกว่า

ถ้า a เป็นจำนวนนับใดๆ และ p เป็นจำนวนเฉพาะ

ap-1  หารด้วย p ซะ แล้วถ้าได้เศษ 1 แล้วล่ะก็ p ก็เป็นจำนวนเฉพาะ

แต่แหม มันก็ดูยากนะครับ เพราะเราต้องหาว่า a ตัวไหน ที่จะทำให้ข้อความข้างบนเป็นจริง ดูแล้วก็เหนื่อย

มาดูิีอีกวิธีที่ฉลาดๆกันดูบ้างครับ (แต่วิธีนี้นั้นไม่ได้แน่นอนเสมอ)

เห็นคำว่า Mersenne prime ที่ตอนต้นไหมครับ Mn=2n-1

ถ้าเราเอา ก็เอา Mn มาหารด้วย n ซะ ถ้าเหลือเศษหนึ่ง ก็ิอุิบอิบก่อน แต่ถ้าไม่ใช่หนึ่ง Mn ก็ตัวประกอบแน่นอนครับ

แตุ่ถ้าเป็นหนึ่ง ก็ฮ่าๆๆๆๆๆๆๆๆๆๆๆๆๆๆ Mn อาจจะเป็นจำนวนเฉพาะก็ได้ หรืออาจจะไม่ใช่ก็ได้ (เพียงแต่ว่ามีแนวโน้มที่จะเป็นจำนวนเฉพาะมากกว่าเท่านั้นเอง)

ลักษณะของจำนวนเฉพาะนั้นมีมากมายครับ เช่น

Wilson’s theorem ที่บอกว่า จำนวนเต็ม p>1 เป็นจำนวนเฉพาะ ก็ต่อเมื่อ (p-1)!+1 หารด้วย p ลงตัว

Bertrand’s postulate ที่บอกว่า ถ้า n เป็นจำนวนเต็มบวกที่มากกว่า 1 แล้ว จะมีจำนวนเฉพาะหนึ่งตัว p ที่ n<p<2n

ทั้งหมดเป็นเรื่องเกี่ยวกับจำนวนเฉพาะที่นักคณิตศาสตร์นั้นศึกษากันมาเป็นพันๆปีเลยนะครับเนี่ย ตอนหน้าเราจะมาดูกันว่า แล้วจำนวนเฉพาะนั้นสามารถนำมาประยุกต์ใช้กับอะไรกันได้บ้าง

ตอนนี้เอาแค่ปูพื้นฐานก่อนนะครับ ตอนหน้า เรามาดูกันว่า แล้วทำไมเราถึงส่งเบอร์บัตรเครดิตออกไปซื้อของออนไลน์กันได้ครับ

อ้างอิง

du Sautoy, M. The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. HarperCollins 2004 (มีเว็บไซท์ที่http://www.musicoftheprimes.com/)

Derbysrine, J. Prime Obssession, John Henry Press. Washington DC. 2003

Devlin, K. The language of mathematics, W. H. Freeman and Company, NY. 1998

http://en.wikipedia.org/wiki/Prime_number#There_are_infinitely_many_prime_numbers

ที่มา http://gotoknow.org/blog/mathbeauty/93000


ความพิศวงของตัวเลข จำนวนเฉพาะตอนที่ 1ความพิศวงของตัวเลขจำนวนเฉพาะตอนที่1

Advertisement

≡ เรื่องอื่นๆ ที่น่าอ่าน ≡

สรุปสูตรวงรี

สรุปสูตรวงรี


เปิดอ่าน 82,156 ครั้ง
เรียนคณิต ใครว่ายาก

เรียนคณิต ใครว่ายาก


เปิดอ่าน 16,220 ครั้ง
เทคนิคการคิดเลขเร็ว

เทคนิคการคิดเลขเร็ว


เปิดอ่าน 210,079 ครั้ง
ฟังก์ชันของ exponential

ฟังก์ชันของ exponential


เปิดอ่าน 41,414 ครั้ง
ประวัติศาสตร์ของ ¶

ประวัติศาสตร์ของ ¶


เปิดอ่าน 19,528 ครั้ง
เรื่องของเลขศูนย์

เรื่องของเลขศูนย์


เปิดอ่าน 27,195 ครั้ง
ปีอธิกสุรทิน

ปีอธิกสุรทิน


เปิดอ่าน 40,296 ครั้ง
การวัดมุมเป็นเรเดียน

การวัดมุมเป็นเรเดียน


เปิดอ่าน 42,454 ครั้ง

:: เรื่องปักหมุด ::

ประวัติ แคลคูลัส

ประวัติ แคลคูลัส

เปิดอ่าน 24,546 ☕ คลิกอ่านเลย

Advertisement

≡ เรื่องน่าสนใจในหมวดหมู่นี้ ≡
จำนวนเฉพาะ (Prime Number) คืออะไร?
จำนวนเฉพาะ (Prime Number) คืออะไร?
เปิดอ่าน 122,461 ☕ คลิกอ่านเลย

พื้นที่ของรูปหลายเหลี่ยม
พื้นที่ของรูปหลายเหลี่ยม
เปิดอ่าน 75,396 ☕ คลิกอ่านเลย

สูตรการหาพื้นที่และปริมาตรต่างๆ
สูตรการหาพื้นที่และปริมาตรต่างๆ
เปิดอ่าน 312,251 ☕ คลิกอ่านเลย

การเขียนเซต
การเขียนเซต
เปิดอ่าน 32,541 ☕ คลิกอ่านเลย

สรุปสูตรพาราโบลา
สรุปสูตรพาราโบลา
เปิดอ่าน 211,422 ☕ คลิกอ่านเลย

จำนวนนับ
จำนวนนับ
เปิดอ่าน 4,245 ☕ คลิกอ่านเลย

≡ เรื่องน่าอ่าน/สาระน่ารู้ ≡

มารู้จักวิธีป้องสิวกันดีกว่า
มารู้จักวิธีป้องสิวกันดีกว่า
เปิดอ่าน 8,620 ครั้ง

หลักสูตรการศึกษาปฐมวัย พ.ศ. 2560
หลักสูตรการศึกษาปฐมวัย พ.ศ. 2560
เปิดอ่าน 98,904 ครั้ง

ต้นมันปู
ต้นมันปู
เปิดอ่าน 29,465 ครั้ง

หายใจผิด ตัวการทำลายผิว
หายใจผิด ตัวการทำลายผิว
เปิดอ่าน 9,870 ครั้ง

ดนตรีโมสาร์ทช่วยทารกโตเร็วขึ้น
ดนตรีโมสาร์ทช่วยทารกโตเร็วขึ้น
เปิดอ่าน 14,688 ครั้ง

เกมส์ รวมเกมส์สนุกๆ มากมาย
สนามเด็กเล่น

แหล่งรวมเกมส์ เกมส์ให้เล่นมากมาย ศูนย์รวมเกมส์สนุกๆ เกมส์ความรู้ เกมส์ลับสมอง เกมส์ประลองยุทธ แหล่งรวบรวมข้อมูล เกมส์ เกมส์ออนไลน์ เกมส์มันๆ เกมส์ตัดผม ไว้มากมายที่นี่ ให้เด็กๆได้เลือกเล่นมากมาย คลิกเลย


เว็บไซต์ที่น่าสนใจ

  • IELTS Test
  • SAT Test
  • สอบ IELTS
  • สอบ TOEIC
  • สอบ SAT
  • เว็บไซต์พันธมิตร

  • IELTS
  • TOEIC Online
  • chulatutor
  • เพลงเด็กอนุบาล
  •  
    หมวดหมู่เนื้อหา
    เนื้อหา แยกตามหมวดหมู่ สามารถเลืออ่านได้ตามหมวดหมู่ที่นี่


    · Technology
    · บทความเทคโนโลยีการศึกษา
    · e-Learning
    · Graphics & Multimedia
    · OpenSource & Freeware
    · ซอฟต์แวร์แนะนำ
    · การถ่ายภาพ
    · Hot Issue
    · Research Library
    · Questions in ETC
    · แวดวงนักเทคโนฯ

    · ความรู้ทั่วไป
    · คณิตศาสตร์
    · วิทยาศาสตร์และเทคโนโลยี
    · ภาษาต่างประเทศ
    · ภาษาไทย
    · สุขศึกษาและพลศึกษา
    · สังคมศึกษา ศาสนาฯ
    · ศิลปศึกษาและดนตรี
    · การงานอาชีพ

    · ข่าวการศึกษา
    · ข่าวตามกระแสสังคม
    · งาน/บริการสังคม
    · คลิปวิดีโอยอดนิยม
    · เกมส์
    · เกมส์ฝึกสมอง

    · ทฤษฎีทางการศึกษา
    · บทความการศึกษา
    · การวิจัยทางการศึกษา
    · คุณครูควรรู้ไว้
    · เตรียมประเมินวิทยฐานะ
    · ผลงานวิชาการเล่มเต็ม
    · เครื่องมือสำหรับครู

    ครูบ้านนอกดอทคอม

    เว็บไซต์เพื่อครู ข่าวการศึกษา ความรู้ การศึกษาไทย

          kroobannok.com

    © 2000-2020 Kroobannok.com  
    All rights reserved.


    Design by : kroobannok.com


    ครูบ้านนอกดอทคอม
    การจัดอันดับของ Truehits Web Directory

    วิธีนำแบนเนอร์ของครูบ้านนอก.คอมไปแปะในเว็บท่าน บันทึกภาพแบนเนอร์นี้และลิงค์มาที่เราครับ (มีแบนเนอร์ 2 แบบ)
     

    ครูบ้านนอกดอทคอม เว็บไซต์ของครูตัวเล็กๆ คนหนึ่ง ที่หวังเพียง ใช้เป็นช่องทางในการสื่อสาร แลกเปลี่ยน เพิ่มพูนความรู้ และให้ข่าวสาร ที่ทันสมัยต่อเหตุการณ์แก่คุณครู ผู้ปฏิบัติงานในทุกพื้นที่ของประเทศไทย เพื่อความเจริญงอกงามในปัญญา และเจริญก้าวหน้าในวิชาชีพ

    เว็บนี้ถือกำเนิดเมื่อ 5 มกราคม 2548

    Email : kornkham@hotmail.com
    Tel : 096-7158383

    สนใจสนับสนุนเรา โดยลงโฆษณา
    คลิกดูรายละเอียดที่นี่ครับ